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Spatial segmental density fluctuations occurring in a polystyrene-polyisoprene diblock copolymer in bulk 
and in disordered state were investigated by small-angle X-ray scattering. The observed wavelength of the 
dominant mode of the fluctuations was found to be larger than that predicted by the random phase 
approximation by a factor up to 50 ~o. This discrepancy was found to be essentially removed by taking into 
account the distributions of molecular weight and composition of the block copolymer. 
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INTRODUCTION 

Analyses of the spectrum of thermally induced 
concentration fluctuations of polymer mixtures and block 
copolymers in the disordered bulk or condensed state are 
one of the interesting subjects in polymer physics. This is 
partly because the analyses lead to the prediction of the 
thermodynamic stability limits (spinodal points) for the 
mixtures and block copolymers, and partly because the 
fluctuations reflect properties of individual polymer 
molecules in the condensed phase such as their radii of 
gyrations and the thermodynamic interaction parameter 

between the dissimilar monomers. The results obtained 
in such studies also provide key information on the 
mechanism and dynamics of ordering processes when the 
systems are quenched inside the spinodal line. Analyses 
on thermally induced spatial concentration fluctuations 
of segments can be performed experimentally by elastic 
scattering of light, X-rays and neutrons. 

We previously reported small-angle X-ray scattering 
(SAXS) analyses of the spatial concentration fluctuations 
of segments for a particular diblock copolymer HK-17 of 
polystyrene-polyisoprene (SI) in bulk and in disordered 
state 1. We found that the spectrum of thermal 
concentration fluctuations as observed by the SAXS 
intensity distribution is in good agreement with the 
theoretical spectrum predicted by Leibler 2 on the basis of 
the mean-field random phase approximation (RPA). By 
best-fitting the experimental SAXS intensity distributions 
measured as a function of temperature we could 
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determine the thermodynamic interaction parameter 
between dissimilar monomers as a function of 
temperature. The z-parameter is an important parameter 
which determines the intensity of the concentration 
fluctuations (rl2(q))T for the particular Fourier mode 
with wavenumber q and its q-dependence, and therefore 
the fluctuation spectrum, where ( )T denotes thermal 
average. 

Another important parameter which also characterizes 
the fluctuation spectrum is the wavenumber qm of the 
dominant mode of the fluctuations, although the analysis 
of this parameter was disregarded in the previous paper 1 . 
This mode with qm is the one which gives rise to the 
maximum value of (q(q)2)T and hence to the maximum 
scattering intensity I(q,n) at the magnitude of the 
scattering vector q equal to qm. Here q is defined by 

q = (4zr/2)sin 0 (1) 

and 

qm = 2rc/D = (4rc/2)sin 0,~ (2) 

where 2 and 0 are the wavelength of X-ray and half the 
scattering angle in the medium, respectively, D is the 
wavelength of the dominant Fourier mode of the 
fluctuations, and 20m is the scattering angle at which the 
scattered intensity becomes a maximum. 

In this paper we re-examine our previous experimental 
data for HK-17 and compare the experimental value 
D(D~,r, ) determined from the peak position 20~, of the 
scattering profile (equation (2)) with the value D(Dtheor) 
predicted by RPA. The value D=p, in turn, is related to the 
radius of gyration, Rs~xp, of the block copolymer in 
disordered state. The value Rg~xp, which can be 
determined by best-fitting the experimental and 
theoretical scattering profiles, can be compared with 
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Rg,th~ r calculated from the segmental lengths and 
polymerization indices of the components of the block 
copolymer. We found a significant discrepancy between 
Dtheo r and Dex p (Dexp/Dtheor~,,1.5) o r  Rg,theor and Rg~p 
(Rg,~,p/Rg,th~o~,l.5) for HK-17, if we adopted the 
scattering formula presented by Leibler 2 for the diblock 
copolymer with no composition and molecular weight 
distributions. A similar discrepancy was reported by 
Bates for a diblock copolymer of deuterated 
polybutadiene and protonated polybutadiene 3. Here we 
explore the effects of the two kinds of distribution, i.e. the 
distribution of total molecular weight and that of the 
fraction of A component in an AB diblock copolymer, on 
Rg~x p and on the discrepancy. Here we assume that both A 
and B block sequences obey a Schultz-Zimm type 
molecular weight distribution 4'5 as used by Leibler and 
Benoit 6 and by Bates and Hartney 7,s. 

In this paper, we first present experimental data for a 
particular SI diblock copolymer designated as HK-17 
and their analysis with Leibler's theory for a diblock 
copolymer having no molecular weight and composition 
distributions. We elucidate the discrepancy between D0xp 
and Dtheo r or between Rg,exp and Rg.theor. We briefly describe 
the theoretical background for elastic scattering from 
thermal concentration fluctuations, and the scattering 
formula for a block copolymer with composition and 
molecular weight distributions. The experimental profiles 
are then re-examined, Rg.exp , Otheo r and Z are re-estimated 
and the results are compared with the previous analyses. 
The analyses presented are for HK-17 with a relatively 
broad molecular weight distribution, as indicated by the 
large heterogeneity index Mw/M~.~ 1.20. Finally, the 
effects of the distributions on  Dexp/Dtheo r and Rg,exp/Rg,theor 
are examined for a series of SI diblock copolymers with 
different Mw/M~. 

EXPERIMENTAL 

The SI diblock copolymer HK-17 was subjected to 
extensive studies for this paper and the results of its 
characterization are summarized in Table 1, where M~ is 
the weight average molecular weight, Was is the average 
weight fraction of polystyrene (PS) block in the SI diblock 
copolymer and Rg,theor is the unperturbed radius of 
gyration of the SI block copolymer as calculated from the 
following equation: 

2 2 1/2 
Rg,theor ~-- (NnJ, saps/6 + Nn,plapi/6) (3) 

where aps and apl are the statistical segment lengths for 

PS 9 and polyisoprene (PI) 1° block chains as defined by 

aps = [(R2s)o/Nn,PS]'/2 = 0.68 nm 

apt = [(R2p,) o/N,,e,]'/2 = 0.59 nm 

(R2)o is the mean squared unperturbed end-to-end 
distance for the K block chains (K = PS or PI), and N,~,s 
and N,~I are the number average polymerization indices 
for the PS and PI block chains, respectively. Note that apt 
depends on the microstructure of PI. The value ap~ given 
above is relevant for polymer prepared by anionic 
polymerization in THF (tetrahydrofuran) at - 78°C with 
sec-butyllithium as initiator 1°. The detailed polymeri- 
zation method for HK-17 and the microstructure of PI 
block chains having high vinyl content were described in 
the previous paper 1. Note that M~ was reported to be 
8.5 × 103 in the previous paper, which turned out to be an 
overestimate, and we currently believe that the value 
6.8 x 103 given in Table I is the correct one. The average 
volume fraction Ors of the PS block in the SI block 
copolymer is estimated to be 0.468 from Wes and will be 
used for calculating the scattering functions. 

The effect of molecular weight distribution on Rg,exp was 
also studied for a series of SI-diblock copolymers having 
different Mn (number average molecular weight), and Wps, 
and their characterizations are summarized in Table 2. In 
the calculation of Rg,theor for SI block copolymers prepared 
by sequential living anionic polymerization in benzene, 
the value ap~ relevant for low vinyl content was used 11 : 
apt = 0.63 nm. 

The detailed procedures for measuring the SAXS 
profiles were described in the previous paper ~. SAXS 
measurements were made with bulk specimens for HK-17 
and with DOP solutions for other SI block copolymers. 

EXPERIMENTAL RESULTS 

We first describe the previous analyses and then the 
remaining problems which we deal with in this paper. 
Figure 1 shows the de-smeared SAXS profiles of HK-17 in 
bulk and in disordered state measured at various 
temperatures, (a), and the analyses on the temperature 
dependence of the scattering profiles, (b). The analyses 
involve the reciprocal of the peak intensity I m 1 = I(qm)- I 
and the wavelength D of the dominant mode of the 
fluctuations determined by equation (2) as a function of 
the reciprocal absolute temperature T -1. The linear 
relationship between I~ 1 and T-1 and the fact that D is 
independent of T-1 ensure that the specimens are in 

Table 1 Characterization of SI diblock polymer HK- 17 and estimation of its radius of gyration 

Rg,exp (A) 

10-3 Mn a Mw/Mn b Wps c Rg,thoar d Monodisperse e MW / MW and coml~ 

6.8 1.20 0.50 23.2 35.5 30.6 23.5 

a Number average molecular weight as estimated by vapour pressure osmometry 
bDetermined by gel permeation chromatography 
CAverage weight fraction of PS as determined by elemental analysis 
dCalculated by using equation (3) in the text; aps=6.8 and api= 5.9 A 
"Determined from qm by assuming no molecular weight and composition distributions 
Y Determined from qm by assuming Schultz-Zimm molecular weight distribution for total molecular weight but no distribution for composition (case II) 
°Determined from qm by assuming distributions in both total molecular weight and composition as predicted by the Schultz-Zimm distribution 

function (case I) 
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Figure 1 (a) Results of best fitting between experimental SAXS profiles of HK-17 (symbols) in the disordered state obtained at various temperatures 
and the theoretical curves (solid lines) obtained by assuming that the polymer is monodisperse. Temperature (°C): A, 45; O, 60; I-3, 80; V, 100;O, 110; 
+ ,  120; x ,  140. 0a) Reciprocal SAXS intensity (O) measured at q = 0.0539 A-1 and Bragg spacings (O) at the scattering maxima of HK-17 in bulk 
plotted as functions of reciprocal temperature 

the disordered state (see equations (5) and (13)) in the 
temperature range covered in this experiment. 

The measured SAXS profiles shown by the data points 
in Figure la were best-fitted with the theoretical profiles 
(solid lines) given by Leibler 2 for diblock copolymer with 
neither total molecular weight distribution nor 
composition distribution. The best fit was obtained by 
adjusting the z-value, which affects the breadth of the 
profile and the radius of gyration (defined as Rg,exp here) of 
the entire diblock copolymer in the unperturbed state, 
which affects the peak position 20 m (see equations (5) and 
(12)). Good agreement between the theoretical and 
experimental profiles was obtained, indicating that RPA 
theory predicts the thermal concentration fluctuations of 
the diblock polymer in the disordered state. The ;(-value 
per monomeric unit was determined as a function of 
temperature, the result of which is shown by curve A in 
Figure 5. 

The problem which was ignored in the previous 
analyses and still remains is a comparison between Rg.exp 
thus estimated by best fits and Rg,th=or estimated by using 
equation (3). Rgexp was 36 A*, which is about 1.5 times 
Rg,t~or(= 23.2 A)I as shown in Table I. More directly, one 
can compare DCxp and Otheo r. Dex p can be estimated by 

Dex p - - 2 n / q  .... p (4a) 

where q .... p can be directly measured, and 

Dtheo r = 27~/qm.theo r (4b) 

where qrn,theor can be calculated by qm,theor=Ot/Rg,theor, 

*1A=10-~nm 

being a numerical constant which depends on 
fPs =-Nn,Ps/(Nn,ps-t-Nn.PI) and is given by the scattering 
theory. Doxp and Dth~or are 114 and 75 A, respectively, and 
hence Dexp/Dtheo r ~ 1.5. 

THEORETICAL B A C K G R O U N D  

Scattering function from diblock copolymers with 
monodispersed molecular weight 

Leibler z gave the scattering function I(q) for diblock 
copolymers in disordered state: 

where 

I(q)- ' ~ S(q)/W(q) - 2 Z (5) 

S(q) = ShA(q) + SBe(q) + 2SAB(q) = N g ( f  = 1) (6) 

W(q) = S AA (q)SBB(q) -- S2B(q) (7) 

SAA(q ) : X g ( f )  (8) 

Saa(q)=Ng(1 - f )  (9) 

SAa(q)=(1/2)N[g(f = 1)--g(f)--g(1 - - f ) ]  (10) 

g ( f ) -  (2/x 2)[fx + exp( - fx) - 1] (11) 

x - q2R2 = (q2a2/6)N = yN (12) 

The function Su(q)( i j=A or B) is the q-Fourier 
component of the density-density correlation function 
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between i and j monomers for a Gaussian chain, 
N=NA+N B is the total polymerization index of AB 
diblock copolymer, NK is the polymerization index of K 
block chain (K = A or B), f = NA/N and a is the Kuhn 
statistical segment length, where a = aA = aB is assumed, 
aK being the Kuhn statistical segment length of K block 
chain. 

It should be noted that S(q)/W(q) has a minimum at 
q = qm and hence intensity has a maximum at qm" For a 
given f, qm depends only on Rg but not on g. Since 
S(q)/W(q) hardly depends on T except for a very weak T 
dependence via that of R v I£ ~ should vary linearly with 
T-  1 if the T dependence of g is given by 

Z = A + B/T (13) 

These two predictions were confirmed by the 
experimental results shown in Fi.qure I and extensively 
discussed in the previous paper I. 

When the theoretical scattering intensity from the 
block copolymer with a given f is plotted as a function of 
qRg, it has a maximum at q = qm satisfying qmRg = ~, where 
the numerical constant ~ depends on f, and the intensity 
distribution with q depends upon zN. Therefore the best 
fit of the experimental scattering profile to the theoretical 
one determines R s (defined as Rg,oxp) and zN. This Rs,ox p 
may be compared with Rs,theo r given by equation (3). 

Effects of composition and molecular-wei.qht distributions 
The effects of molecular weight distribution on the 

scattering function I(q) were previously treated by Leibler 
and Benoit 6, Hong and Noolandi 12 and Bates and 
Hartney 7,a. Leibler and Benoit gave the analytical 
expression for l(q) using a Schultz-Zimm molecular 
weight distribution for the symmetric block copolymers 
with average fraction of q~g =NA.J(NA~ + NB,~)= 0.5 and 
with identical molecular weight distributions for A and 
B block chains. Here NA., and NB,, are number average 
polymerization indices for the A and B block chains, 
respectively. Bates and Hartney generalized Leibler- 
Benoit calculations for the asymmetric block polymers 
with CA # 0.5. This generalization is practically important 
because most of the block copolymers are asymmetric, as 
shown in Table 2. However, on executing the detailed 

calculations we could not obtain the same formula as 
those reported by Bates and Hartney. In particular, it is 
not clear to us whether the abscissa of convergence was 
properly treated in performing Laplace transformation of 
the Whittaker function. Thus we summarize our results 
below and in the Appendix. In calculating I(q) we further 
generalized Bates-Hartney calculations by allowing A 
and B block chains to have different parameters 
characterizing the Schultz-Zimm distribution functions. 

Here we consider two cases: case I in which both A and 
B block chains have Schultz-Zimm molecular weight 
distributions; and case II in which f is fixed and only N 
has a Schultz-Zimm distribution. Of course case II is a 
special case of the general case I. In both cases I(q) for 
block copolymers with molecular weight distribution is 
obtained by substituting, respectively, N.q(f), N.q(1-.f) 
and N.q(f= 1) for N.q(f), N.q(1- f )  and N.q(f= 1) in 
equation (5). 

The average quantities N.q(f) etc. are given by 

N---fff-- J dNAdNB~kA(NA)~kB(NB)I N.q(1-- f )  ~ 
g.q(f= 1)/ o o \ Y g ( f =  1)/ 

(14) 

for case I, where ~A and ~B are, respectively, the 
distribution functions for the polymerization index for A 
and B block chains, which are assumed to be independent 
and to be given by the Schultz-Zimm equations: 

~/A(NA ) = VkAa + 1 NkAexp( _ VANA)/F(kA + 1) (15) 

and 

Os(Ne) = ~s + 'Npexp( - vBNB)/F(kB + 1) (16) 

VA = kA/NAn = (kA + 1)/NAw (17) 

va = kB/NB, = (kB + 1)/NBw (18) 

NAw/NAn  = (k A + 1)/k A -= 2 A (19) 

Table 2 Characterization of SI diblock copolymers and comparisons of experimental and theoretical values for the wavelength of the dominant mode 
of the fluctuation 

Dtheor 
Polymerization 

Sample solvent 10 -4 Mn ° Mw/Mn b wPS c CPS d Dexp" (A) Monodisperse: MW g MW and comp? 

HK-15 THF 1.74 1.20 0.55 0.52 161 119 (1.34) ~ 138 (1.16) 184 (0.88) 
TSI-3 Benzene 3.2 1.12 0.59 0.56 195 166 (1.17) 182 (1.07) 219 (0.89) 
HS-12 Benzene 7.52 1.05 0.46 0.43 309 259 (1.19) 269 (1.15) 291 (1.06) 
HS-16 THF 2.3 1.04 0.74 0.72 141 131 (1.07) 135 (1.04) 141 (1.0) 
TSI-2 Benzene 3.0 1.12 0.77 0.74 178 149 (1.19) 163 (1.09) 187 (0.95) 
HS°15 THF 4.2 1.04 0.76 0.74 216 174 (1.24) 180 (1.20) 181 (1.19) 
HS-7 THF 5.1 1.04 0.31 0.28 262 201 (1.30) 206 (1.27) 216 (1.21) 
B-2 THF 17.6 1.26 0.85 0.83 376 333 (1.13) 392 (0.96) 436 (0.86) 

*Number average molecular weight as determined by membrane osmometry 
bDetermined by gel permeation chromatography 
' Average weight fraction of PS as determined by elemental analysis 
dAverage volume fraction of PS as determined by elemental analysis 
e Determined using equation (4a) 
IDetermined using equation (4b) for monodisperse molecular weight distribution 
g Determined using equation (52) by assuming Schultz-Zimm distribution for total molecular weight but not for composition (case II) 
h Determined using equation (52) by assuming distributions for both total molecular weight and composition (case I) 
~Values in parentheses indicate Dexp/Dtheo r 

1392 POLYMER, 1989, Vol 30, August 



and 

Ns~/Ns, = (ks + 1)/kB = 2s (20) 

NKw and 2K are, respectively, the weight average 
polymerization index and the heterogeneity index for K 
block chain. 

By using Laplace transformation of the Whittaker 
function we obtain the final formula for the averaged 
quantities for case I: 

Ng(f )  = 2(Nn/x~)(G1 + G 2 - Ga) (21) 

where 

zx(k A + 1) 
G1 =x~ kA +ka+  2 F(1,kA + 2,kA +ks+ 3; 1--z~) (22a) 

for ~)A ~ k~/(kA + ks) (22b) 

k A -b 12  F(1,ka + 1 ,k A -t- ks + 3; 1 - G1 = XnkA_~ B Z11) 

(23a) 

for OA>~kA/(kA+ka) (23b) 

The quantity x, is defined by 

x. = yN~ = q2N.a2/6 = q2R~n (24) 

N~ = NAn -t- Nan (25) 

and q5 A is defined by 

(~A = NAn/(NAn -Jr" Nan ) = NAn/N n (26) 

Rgn is the average radius of gyration for the entire block 
copolymer. F(~,fl,7;z) is Gauss's hypergeometric 
function: 

F ( a ; f l ; 7 ; z )  = F ( y )  ~ F(~+n)r(~+n) Z" 
F(cc)Fq/) .= o r(y + n) n! (27) 

where F is the gamma function, z 1 is defined by 

z I = ks~bA/kA(1 - -  ~bA) (28) 

G 2 in equation (21) is given by 

G 2 ~  - -  1 - -~A kA a t- I~A+ 1F(1,kA + 1,kA+ks+2;1 - -  Z 1 2 2 )  

(29a) 

ks kA 
for x./> (29b) 

1-4'~ 4'A 

G 2 = 
~A k A W k s +  1 

~AF(1,  k s + 1, kA + ka + 2; 1 - 1/21z2) 

(30a) 

for x.~< ka kA (30b) 
1--4~A ~ 

SAXS from block copolymers: K. Mori et al. 

where z 2 is defined by 

Zz = (1 + X,d~A/kA)- 1 (31) 

Finally, G3 in equation (21) is given by 

1 ks 1F(1,kA+ 1,kA+ks+2; 1 - z l )  
G 3 =  1 --q~A kA+ks+ 

(32a) 

for ~bA ~< kA/(kA + ks) (32b) 

1 kA 
G3--~A ka+ks+ 1 F(1,ks + 1,kA +ka+ 2; 1 - 1/zl) 

(33a) 

for c~A>fkA/(kA+ks) (33b) 

(22b), (23b), (29b), (30b), Note that the conditions 
(32b) and (33b) result from the convergence conditions 
of the Laplace transformation of the Whittaker function 
(see Appendix). Similarly, N O ( I - f )  is obtained by 
exchanging the subscripts A and B in equations (22)-(33) 
for No(f ) .  

Finally, NO( f = 1) is given by 

N o ( f  = 1) = 2(Nn/X2)(G4 q.- G 5 - G6) (34) 

where 

G 4 =- x n 

G s =  
1 ks 

1--~bA kA+ks+ 1 

(1-zl)z9 

for q~A ~< k~/(kA + kB) 

_ 1 kB I~A~B+aF(1,ks+ 
G5 ~bAkA+ks+ 1,kA+ks+2; 

(1 -- 1/Zx)Z3) 

(35) 

4 A+ I~BF(1, kA + 1,kA + k s +  2; 

(36a) 

(36b) 

1 k s 
G 6 - 

1--~bA kA+kB+ 1 

(37a) 

for q~A ~> kA/(kA + kB) (37b) 

F(I,kA + 1,kA +ka+  2; 1 - z l )  

(38a) 

for 4~A<~kA/(kA+kB) (38b) 

F(1,kB+ 1,kA+kB+2; 1 -- 1/zl) (39a) 
1 kA 

G 6 =  
~A k A + k B +  1 

for ~bA ~> kA/(kA + kB) (39b) 

where z3 is defined by 

z~ = [ 1 + x d  1 - $ , ) / k . ]  - ' (40) 

originate from the Again the conditions (36b)-(39b) 
convergence conditions. 
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The equations given above become much simpler for 
the special case of 

kA=ka=k=(2- 1) -I (41) 

i.e. the case where A and B block chains have the same 
molecular weight distributions. This is the case previously 
treated by Bates and Hartney ~'8. In this case the 
equations for bA ~0.5 are given below: 

N g(f) = 2(N./x2. ) { (Xn/2) I ~_-~A~A F(1,k + 2, 2k + 3;z4) 

+ m  ' ' I  ( 
l--hA 2+1  2~/(~-11F 1 , k + l , 2 k + 2 ; 1 -  

b, ) 
1 - b *  z2 

-F(1.k + 1.2k+ 2; z4)l} (42) 

z4 = 1 - b,/(1 - b,) (43) 

F 
NO(I - f )  = 2(Nn/X~)I(1/2)x~F(1. k + 1.2k + 3; z4) + G 

l - b ,  1 2 F(l'k+l'2k+2;z4) (44) 

where 

-Z-1 l z~/(a_,)F(l,k+l,2k+2;1 1 - ~ z s )  
G=,eA 2+ 1 

(45a) 

for x.>.k[1/ba-1/(1-b,) ] (45b) 

G= 1 1 zX/(a_1)F{1, k 1,2k+2; 1 
1-~b, 2+ 1 5 \ + I - b ,  z, 

(46a) 

for O<~x.<~k[1/b,-1/(1-b,)] (46b) 

and 

z~  = [1  + x ° ( 1  - b , ) ( , t  - 1)]  - ' (47) 

Finally Ng(f = 1) is given by 

1 1 ~z~/< ~_ ~ 
No(f= 1) =2(NJx~) x.÷ 1 -hA 2+ i [z~/(~- 

x F(1,k + 1,2k +2; z4z2) -F(1 ,k+  1,2k +2; z,)]} 

( 4 8 )  

Equations (42)--(48) should be compared with those of 
Bates and Hartney. Note that conditions (45b) and (46b), 
which originate from the abscissa of convergence in the 
Laplace transformation of the Whittaker function, 
depend on q for a given block copolymer with a given set 
of hA, k and N,. Our equations reduce to those by Leibler 
and Benoit for the special case ha=0.5. 

The average quantities for the special case II are simply 
given by 

Ng(f) = 2(Nn/x~){ fx ~ - 1 + [k/(k + fx.)] k} (49) 

N O ( 1  - f )  = 2 ( N J x ~ ) { ( 1  - f ) x .  - 1 + [k/(k + (1 - f ) X n ) ]  k} 

(50) 

Ng(f = 1) = 2(NJx~){Xn - 1 + [k/(k + x.)] k} (51) 

where f is the composition and k is the parameter 
characterizing the distribution of N, i.e. k= 1/(2-1), 
where 2 = Nw/N, is the heterogeneity index for the total 
polymerization index. 

In both cases I and II, for a block copolymer with a 
given average composition, the theoretical scattering 
intensity function can be plotted as a function of 
x]/2 =qR~. In this case the scattered intensity becomes 
maximum at q = qm satisfying 

qm,theorRgn = fl  

where the numerical constant fl depends upon 2 = NJN,, 
and the width of the scattering maximum depends upon 
zN~. Here for case I, 2 is the heterogeneity index for PS 
and for PI block chains, whose indices are assumed to be 
identical, while for case II 2 is the heterogeneity index for 
the entire block chain. Thus the theoretical scattering 
profile plotted as a function of q depends upon 2, Rg~ and 
zN~ for a given copolymer with a given b. Thus the best fit 
of the experimental and theoretical profiles for a given 2 
and b determines R~. (defined as  Rg,exp ) and zN,. This 
Rg,,xp can be compared with Rg,theor given by equation (3). 
Alternatively, as in the case of the block copolymer with 
monodisperse molecular weight distribution, one can 
estimate Dexp=2n/qrnxxp directly from the experimental 
peak position qm which is then compared with 

Dtheo r = 27~/qrn,theor = 2rcRgJfl (52) 

Rg. being given by equation (3). Note that the analyses 
described above require information on 2 only about the 
Schultz-Zimm molecular weight distribution. De- 
termination of ;t requires additional information on N, 
which can be estimated by osmometry. 

ANALYSES OF EXPERIMENTAL RESULTS AND 
DISCUSSION 

Here we re-examine experimental scattering profiles of 
HK-17 shown in Figure la using the equations described 
above for cases I and II. We first summarize the 
assumptions we made for our analyses based on case I: 

(1) The distribution functions for the polymerization 
index for both PS and PI are independent and are given 
by a Schultz-Zimm equation. 

(2) PS and PI have identical heterogeneity indices 

2ps = 2p, = 2 = Nw/Nn 

as adopted by Bates and Hartney 7,a. 
(3) 2 can be estimated from the molecular weight 

distribution curve for the block copolymer as a whole as 
determined by gel permeation chromatography (g.p.c.) 
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together with a calibration curve obtained from standard 
polystyrene samples with very narrow molecular weight 
distributions. 

In the g.p.c, curve we measured the distribution 
function ~b(N,) for the polymerization index N t of total 
block copolymer. This ~(Nt) is given by 

N t 

~b(Nt) = f ~JA(NA)~B(Nt-NA) dNA 

o 

(53) 

where SA and $~ are the distribution functions for A and 
B block chains given by equations (15) and (16). Equation 
(53) can be rewritten as 

1 

J/(N,) ~ N 2k + 'exp( - v.N,) f - x~' exp [ -  (VA-- 9B)Ntx]dx 

o 
(54) 

where k = (2 - 1)- 1 = ]c A = kB. VA and v B are related to k by 
equations (17) and (18), where 

NAn = ~bANn,gpc , NBn = (1 - -  (~A)Nn,gpc (55)  

N,,~ is the total number average polymerization index as 
determined by g.p.c. Thus the best fit of I~(Nt) t o  the 
experimental distribution function yields the parameter k 
for the distribution function of individual block chain and 
N,,r~ for the entire chain. 

Fioure 2 shows a comparison of the experimental I//(Nt) 
and the theoretical profile. The experimental molecular 
weight distribution function is seen to be well fitted with 
the one given by equation (54) based upon the Schultz- 
Zimm equation. The best fit gives that 

~" = "~PS : •PI = 1 . 3 9 8  (56) 

or k= 1 = ( 2 -  1) -1 =2.51 and N.,p~=75. 
By assuming $A and ~'B to be independent, the 

heterogeneity index ,~t for the entire block chain can be 
estimated from 2ps and 2p~: 

'~ t - -  1 = (J~PS - -  1)~p2s  "l- (~'PI - -  1 ) ( 1  -~vs) 2 ( 5 7 )  

40 

30 

2o g. 

I0 

0 la  
0 I00 200 300 

Nt 
Figure 2 Comparison of the experimental distribution profile of 
polymerization index for HK-17 (O) and the theoretical curve based on 
the Schultz-Zimm equation ( - - )  
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Since HK- 17 has ~bps = 0.468, we obtain/'~t = 1.20, which is 
in good agreement with 2t directly determined from the 
experimental distribution function ~//(Nt). Here again it 
should be noted that only the information on 2 or At was 
used for the analyses of the scattering profiles. 

Analyses based on case II can be performed using 

k = ( , ~ , -  1)-x = 0 . 2 0 - 1 ) - '  = 5.0 (58) 

To apply the equations derived above for symmetric 
block copolymers to asymmetric block copolymers such 
as PS-PI block copolymers, we define the following 
quantities after Helfand I s: 

~bps = (Nn,pS/POS)/(Nnys/Pos + Nn,pt/Pol) (59) 

where N,,K is the number average polymerization index 
for K block chains (K=PS or PI). Pos and Po~ are the 
number density of monomer units for pure PS and PI 
homopolymers. N,es and Nn,pI can be estimated from Mn 
measured by osmometry and Wps. To calculate Z, N, is 
required, and N. is given by 

N n = po(Nn,PS/POS + Nn,Pl/POl) (60) 

PO = (PosPoI) 1/2 (61) 

For HK-17 the function G should be changed from 
equation (46a) to equation (45a) with increasing 
Xn = qZR2 from conditions (45b) and (46b). 

Figure 3 shows results of best fitting between the 
experimental profiles for HK-17 and theoretical profiles, 
where the theoretical curves are obtained for case II with 
the distribution only in the total polymerization index. 

10 

O3 
¢- 

Q.) 
r r  

@ - 

0 20 40 60 80 1 O0 

2 0 (min. I 

Figure 3 Results of best fitting between the experimental SAXS profiles 
of HK-17 (symbols) in the disordered state and the theoretical curves 
(solid lines) obtained for case II with a distribution only in total 
molecular weight. Temperature (°C): A ,  45; ©, 60; D,  80; V ,  100; O ,  
110; + ,  120; x ,  140 
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The best fitting yielded Rg,oxp = 30.6 A, as shown in Tab/e 1, 
and temperature dependence of Z, as shown in curve B in 
Figure 5. The best fits obtained in Figure 3 are as good as 
those obtained in Figure I. The introduction of the 
molecular weight distribution as given by case II is found 
to decrease the discrepancy between Rs,theo r and Rg,exp and 
hence the discrepancy of the peak positions between the 
theoretical and experimental scattering profiles. 
However, the distribution of the total molecular weight 
alone is not sufficient to account for the discrepancy. 

Figure 4 shows the results of best fitting the 
experimental profiles of HK-17 (data points) with the 
theoretical profiles (solid lines) calculated for case I, 
which gives a more realistic model than case II. Again 
we find that the best fits obtained in Figure 4 are as 
good as those in Fixtures 1 and 3. The best fits yielded 
Rg.~p=23.5 A, as shown in Table 1, and the temperature 
dependence of Z as shown in curve C in Figure 5. Rg,,xp 
effectively decreases on introducing the molecular weight 
distribution and becomes close to the expected value of 
23.2 A. Thus the molecular weight distribution which 
gives distributions of both total molecular weight and 
composition explains the large discrepancy between Rg.exp 
and Rs.~h~or, as discussed in the preceding section. 

The equations of curves A, B and C in Figure 5, which 
give the temperature dependences of Z obtained for 
monodispersed block copolymer, case II and case I are, 
respectively, 

l = -0.089 + 72/T (62) 

;~ = -0.063 + 59/T (63) 

Z = 0.025 + 18.5/T (64) 
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. N  

t -  
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B J 

2 

0 20 40 BO 80 100 

2 0  [ m i n . )  
Figure 4 Results of best fitting between the experimental SAXS profiles 
of HK-I 7 (symbols) in the disordered state and the theoretical curves 
(solid lines) obtained for case I with distributions in both molecular 
weight and composition. Temperature (°C): • ,  45; O,  60; [] ,  80; ~7, 
100; O,  110; +,  120; x,  140 
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Figure 5 Temperature dependence of the interaction parameter X on 
monomer units for HK-17 in bulk obtained by best fits of the 
experimental and theoretical SAXS profiles for three different 
conditions: @, monodispersed; D, case II (distribution only in total 
molecular weight); O,  case I (distributions in both molecular weight 
and composition). Curves are referred to as A, B and C respectively, in 
text 

The large molecular weight distribution such as that in 
HK- 17 is a special case for block copolymers prepared by 
living anionic polymerization. In the next section we 
examine the effects of molecular weight distribution for 
other SI diblock copolymers with smaller values of 
Mw/M,. 

FURTHER DISCUSSION ON THE EFFECT OF 
MOLECULAR WEIGHT DISTRIBUTION 

Similar analyses for the effects of molecular weight 
distributions on D0xp and Rs,ox p were performed for other 
SI block copolymers and the results are listed in Tables 2 
and 3. Table 2 summarizes the characterization of various 
other SI diblock copolymers prepared by living anionic 
polymerization with solvents, as indicated in the second 
column, and values for Dtheo r a s  calculated from the peak 
positions for the theoretical scattering profiles. 
Comparisons between 1/Dtheo, and 1/D~p correspond to 
those between theoretical and experimental peak 
positions for the scattering profiles. As found for HK-17, 
DtheorS estimated without taking into account the 
molecular weight distributions ('Monodisperse' column) 
are slightly but significantly smaller than Dexps for all the 
specimens, the ratio Dexp/Dtheor averaged for all the 
samples being 1.24. The discrepancy between Dexp and 
Dth~o, is slightly improved by taking into account the 
distribution for total molecular weight (case II) as seen in 
the 'MW' column, averaged for the seven samples except 
for B-2 being 1.14. The discrepancy is significantly less if 
the distributions for both total molecular weight and 
composition are taken into account (case I), as seen in the 
'MW and comp.' column, Dexp/Dth,or averaged for the 
seven samples being 1.02. For samples such as HK-15, 
TSI-3 and B-2, the ratios Oexp/Dtheo r a r e  less than unity, 
which may be due to error in estimating molecular weight 
distributions, i.e. our estimations of Mw/M, or due to a 
slight mismatch of the molecular weight distribution from 
the Schultz-Zimm equation. 

Similar conclusions can be drawn by comparing 
R~.¢xp and Rg,th~o ~ (Table 3). The values/~,¢~p obtained by 
neglecting molecular weight distribution are significantly 
larger than Rs,th~or, the ratio Rs,~xp/Rs,th,o r varying between 
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T a b l e  3 Comparison of experimental and theoretical radii of gyration 
for SI diblock copolymers 

Rg.oxp (h) 
h e o r  

Sample Monodisperse b MW c MW and comp.d 

HK-15 37.1 50.0 (1.35)" 43.5 (1.17) 33.0 (0.90) 
TSI-3 51.7 60.5 (1.17) 55.5 (1.07) 46.0 (0.90) 
HS-12 80.6 97.0 (1.20) 92.0 (1.14) 86.5 (1.07) 
HS-16 42.1 48.3 (1.15) 46.4 (1.10) 44.0 (1.05) 
TSI-2 48.8 58.0 (1.19) 54.0 (1.11) 47.0 (0.96) 
HS-15 56.7 71.0 (1.25) 68.5 (1.21) 67.0 (1.18) 
HS-7 64.5 83.5 (1.29) 79.0 (1.22) 76.0 (1.18) 
B-2 115.0 130.0 (1.13) 111.0 (0.97) 92.0 (0.80) 

"Calculated by using equation (3); aps = 0.68 nm and am = 0.59 nm (for 
THF) and 0.63 nm (for benzene) 
b Determined from qm by assuming no molecular weight distribution 
CDetermined from qm by assuming Schultz-Zimm distribution for total 
molecular weight but not for composition (case II) 
a Determined from qm by assuming distributions for both total 
molecular weight and composition (case I) 
e Values in parentheses indicate Rg,exp/Rg,theor 

SAXS from block copolymers." K. Mori et al. 
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Figure 6 Comparison of Rg,exp (Q) and Rg,theor ( ). Rg,expS were 
obtained by best fitting the experimental SAXS profiles and the 
theoretical curves calculated for case I for various SI block copolymers 
and are plotted against Mn determined by osmometry. Rg,theor was 
calculated for unperturbed polymer chains 

1.13 and 1.35, depending upon Mw/M, and being 1.22 on 
average. By taking into account the distribution for total 
molecular weight only (case II), the discrepancy is 
reduced, the ratio Rg,exp/Rg,theo r averaged for the seven 
samples except for B2 being 1.15. The discrepancy is 
significantly reduced by taking into account the 
distributions of case I, the averaged ratio Rg,exp/Rg,theor for 
the seven samples being 1.03. 

In conclusion, the analyses presented in this paper 
clearly indicate that the distributions for total molecular 
weight and composition of diblock copolymers are one 
possible source of the discrepancy of the peak position in 
the experimental and theoretical scattering profiles. 

Finally, the values of Rg,exp obtained by the correction 
for case I are plotted as a function of number average 
molecular weight M, determined by osmometry in Figure 
6, where the data points indicate Rg,exp and the solid line 
indicates Rg,theor. The experimental results show good 
agreement with the theoretical results and are 
summarized by the following equation: 

Rg,exp = (0.29 ___ 0.04)Mn 1/2 (65) 
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APPENDIX LAPLACE TRANSFORM OF 
WHITTAKER FUNCTION AND ITS 
CONVERGENCE CONDITIONS 

We show here an outline for obtaining the general 
equations (21)-(40). From equations (11) and (14)-(16), 
Ng(f) is given by 

Ng(f)/[~ A + ~v kB+ ' /r(k~ + 1)r(k. + 1)] 

=ff'dNAdXaNkAAexp(--VAXA)NkaBexp(--vBNa)(2/y2N ) 
o o 

x [fiN + e x p ( - y f N ) -  1] (A1) 

=H1 + H 2 - H 3  (A2) 

where 

H1 f dNgdNaNkgexp( -- VANA)NkBexp( -- vBNB)(2f/y) 
0 0 

H2=fidNAdNaNkAexp(--VANA)Nk"exp(--vaNa) 
0 0 

× (2/y2N)exp(- yfN) 

(A3) 

(A4) 

co o~ 

Ha=ffdNAdNBNkAAexp(--VANA)N~aexp(--vaNQ 
0 0 

x (2/y2N) (A5) 
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Let us first calculate Ha. Noting that 

f dNaN~Sexp(- vBNB)(NA + NB) 1 

0 

_ r(ks + 1) W~ .(vBNA) (A6) 
V~ka + a)/2NA (k, - 1)/2exp( _ vBNA/2 ) . 

where IV,,. is the Whittaker function given by 

oo 

exp(-Z/2)Z ~ 
W~,u(Z) = - ~  - ~  ~ 1-~ f dtexp( - t)t"-~ - 1/2 

0 

x (1 + t/Z) "+~- 1/2 

Ha is given by 
ao 

2V(kB + I) [' dNANkA + (ks-1)/2 
H3 = y2v~B +------7)/-3 j 

0 

(A7) 

x e x p [ -  (VA - VB/2)NA] W~.u(VBNA) 

(A8) 

The integral in equation (A8) can be solved by using the 
following formula on the Laplace transformation of the 
Whittaker function: 

O(P) = i dtexp(-pt)tvW~,u(at) 
L /  

0 

F(v+p+3/2)F(v_p+3/2)aU+l/2 (A9) 

F(v - x + 2)(p + a/2) ~ +" + a/2 

x F(v + # + 3 /2 ,# - x  + l/2, v - x  + 2; (2p-a)/(2p + a)) 

(AI0) 
The abscissa of convergence is [all2, i.e, the convergence 
condition of equation (AI0) is given by 

p~> lal/2 (All) 
From equations (A8)-(A10), it follows that 

2r(ks+l)r(kA+l) (vs~ -kB 
H3=y2(kA+kB+ 1)v kA+kB+l \VA/ 

X F(1,kA + 1,kA + kB + 2;(v A -- VB)/VA) (A 12) 

The convergence condition given by (A 11) is rewritten as 

VA/> VB (A 13) 

By using equations (17), (18) and (26), (A13) is further 
rewritten as 

q~A < kff(kA + ka) (A 14) 
For 

qSA > kA/(kA + kB) (A 15) 

we obtain 

2r(kA+ D r ( k . + l )  {VA~ - ~  
Ha = y2(kA + ks + 1)~ A +kB +1 \Va} 

(a16) 
x F(1  ,ks + 1 ,kA + ks + 2 ;(v s - VA)/VB) 

by exchanging subscripts A and B in equation (A12). 
One can calculate H 1 and H2 similarly to Ha. Here let 

us calculate H2. From equation (A4) and by integrating 
H 2 first with NB, one obtains that 

QO 

H2 = (2/y2) f dNgNkAexp[-- (VA + y)NA] 

0 (A17) 
oo 

x f dNBN~Sexp( - vBNs)(N A + NB)- t 

0 

The integration of (A17) is obtained by replacing vA+y 
for VA in the integration of (A5) to obtain Ha. Hence, 

H 2F(kB+ 1)F(kA+ 1) ( vB ~-ks 
2 = y2(kA + kB + 1)(VA + y)kA +kB +, ~ V ~ J  

(A18) 
x F(1,kA + 1 ~A + ks + 2;(v A + y - vB)/(v A + y)) 

The convergence condition is given by v A + y -  vB/2 >t vB/2 
and therefore by 

Xn > ks~(1 - ~bA) -- kff~b A (A19) 

Similarly, by integrating H2 first with NA, one obtains 
oo 

H2 = (2/y2)f dNaNkBexp( - vaNs) 

o (A20) 
oo 

x f dNANkA A exp[-- (VA +y)NA](NA +Ns) -1 

0 

2F(kB+I)F(kA+I) ffVA+y~ - ~  
=y2(kA+ks+l)~A+kB+'\ VS J 

(A21) 
x F(1.kB + 1.kA +ka +2;{va - (VA +y)}/Va) 

The convergence condition is given by 

Xn <~ ks~(1 - ~bA) -- kffq~A (A22) 

Note that equations (A20) and (A21) are obtained from 
equations (A 18) and (A 19) by exchanging the variables kA 
and ka, NA and Na, (VA+y) and v a. In this way one can 
obtain an analytical expression for Ng(f).  It is obvious 
that Ng(1 - f )  is obtained from Ng(f) by exchanging the 
suffices A and B for No(f).  

From equations (11) and (14), Ng( f=  1) is given by 

Ng(f  = 1)/[~A +1 ~8 + 1/F(k A + 1)F(ks + 1)] 

=ffdN, dNsN~'exp(-VANA)N~Bexp(-vsNB)(2/y2N) 
0 0 

x [yN + exp(-  yN) - 1] (A23) 

The integration can be carried out similarly to the 
integration for No(f).  
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